Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Glob Health ; 14: 04058, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38602274

RESUMO

Background: Due to a lack of related research, we aimed to determine the effectiveness of a pharmacist-led medication reconciliation intervention in China. Methods: We conducted a multicentre, prospective, open-label, assessor-blinded, cluster, nonrandomised controlled study at six county-level hospitals, with hospital wards serving as the clusters. We included patients discharged from the sampled hospitals who were aged ≥60 years; had ≥1 studied diagnoses; and were prescribed with ≥3 medications at discharge. Patients in the intervention group received a pharmacist-led medication reconciliation intervention and those in the control group received standard care. We assessed the incidence of medication discrepancies at discharge, patients' medication adherence, and health care utilisation within 30 days after discharge. Results: There were 429 patients in the intervention group (mean age = 72.5 years, standard deviation (SD) = 7.0) and 526 patients in the control group (mean age = 73.6 years, SD = 7.1). Of the 1632 medication discrepancies identified at discharge, fewer occurred in the intervention group (1.9 per patient on average) than the control group (2.6 per patient on average).The intervention significantly reduced the incidence of medication discrepancy by 9.6% (95% confidence interval (CI) = -15.6, -3.6, P = 0.002) and improved patients' medication adherence, with an absolute decrease in the mean adherence score of 2.5 (95% CI = -2.8, -2.2, P < 0.001). There was no significant difference in readmission rates between the intervention and control groups. Conclusions: Pharmacist-led medication reconciliation at discharge from Chinese county-level hospitals reduced medication discrepancies and improved patients' adherence among patients aged 60 years or above, though no impact on readmission after discharge was observed. Registration: ChiCTR2100045668.


Assuntos
Reconciliação de Medicamentos , Farmacêuticos , Humanos , Idoso , Estudos Prospectivos , Hospitais de Condado , Adesão à Medicação
2.
J Exp Clin Cancer Res ; 43(1): 76, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468260

RESUMO

BACKGROUND: While T cell-activating immunotherapies against recurrent head and neck squamous cell carcinoma (HNSCC) have shown impressive results in clinical trials, they are often ineffective in the majority of patients. NK cells are potential targets for immunotherapeutic intervention; however, the setback in monalizumab-based therapy in HNSCC highlights the need for an alternative treatment to enhance their antitumor activity. METHODS: Single-cell RNA sequencing (scRNA-seq) and TCGA HNSCC datasets were used to identify key molecular alterations in NK cells. Representative HPV-positive ( +) and HPV-negative ( -) HNSCC cell lines and orthotopic mouse models were used to validate the bioinformatic findings. Changes in immune cells were examined by flow cytometry and immunofluorescence. RESULTS: Through integration of scRNA-seq data with TCGA data, we found that the impact of IL6/IL6R and CCL2/CCR2 signaling pathways on evasion of immune attack by NK cells is more pronounced in the HPV - HNSCC cohort compared to the HPV + HNSCC cohort. In orthotopic mouse models, blocking IL6 with a neutralizing antibody suppressed HPV - but not HPV + tumors, which was accompanied by increased tumor infiltration and proliferation of CD161+ NK cells. Notably, combining the CCR2 chemokine receptor antagonist RS504393 with IL6 blockade resulted in a more pronounced antitumor effect that was associated with more activated intratumoral NK cells in HPV - HNSCC compared to either agent alone. CONCLUSIONS: These findings demonstrate that dual blockade of IL6 and CCR2 pathways effectively enhances the antitumor activity of NK cells in HPV-negative HNSCC, providing a novel strategy for treating this type of cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Interleucina-6/metabolismo , Infecções por Papillomavirus/complicações , Recidiva Local de Neoplasia/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Células Matadoras Naturais , Receptores CCR2/genética , Receptores CCR2/metabolismo
3.
Sci Adv ; 10(8): eadk3663, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394204

RESUMO

Glycolytic metabolism may account for antitumor immunity failure. Pyruvate kinase M2 (PKM2) and platelet phosphofructokinase (PFKP), two key enzymes involved in the glycolytic pathway, are hyperactivated in head and neck squamous cell carcinoma (HNSCC). Using ganetespib as a drug model for heat shock protein 90 (HSP90) inhibition and combining results from clinical trials and animal treatment, we demonstrated that HSP90 inhibition leads to a blockade of glycolytic flux in HNSCC cells by simultaneously suppressing PKM2 and PFKP at both the transcriptional and posttranslational levels. Down-regulation of tumor glycolysis facilitates tumor infiltration of cytotoxic T cells via suppression of glycolysis-dependent interleukin-8 signaling. The addition of ganetespib to radiation attenuates radiation-induced up-regulation of PKM2 and PFKP and potentiates T cell-mediated antitumor immunity, resulting in a more potent antitumor effect than either treatment alone, providing a molecular basis for exploring the combination of HSP90 inhibitors with radiotherapy to improve outcomes for patients with HNSCC.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Antineoplásicos/farmacologia , Glicólise
4.
ACS Nano ; 18(10): 7618-7632, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422984

RESUMO

Calcium nanoparticles have been investigated for applications, such as drug and gene delivery. Additionally, Ca2+ serves as a crucial second messenger in the activation of immune cells. However, few studies have systematically studied the effects of calcium nanoparticles on the calcium levels and functions within immune cells. In this study, we explore the potential of calcium nanoparticles as a vehicle to deliver calcium into the cytosol of dendritic cells (DCs) and influence their functions. We synthesized calcium hydroxide nanoparticles, coated them with a layer of silica to prevent rapid degradation, and further conjugated them with anti-CD205 antibodies to achieve targeted delivery to DCs. Our results indicate that these nanoparticles can efficiently enter DCs and release calcium ions in a controlled manner. This elevation in cytosolic calcium activates both the NFAT and NF-κB pathways, in turn promoting the expression of costimulatory molecules, antigen-presenting molecules, and pro-inflammatory cytokines. In mouse tumor models, the calcium nanoparticles enhanced the antitumor immune response and augmented the efficacy of both radiotherapy and chemotherapy without introducing additional toxicity. Our study introduces a safe nanoparticle immunomodulator with potential widespread applications in cancer therapy.


Assuntos
Cálcio , Nanopartículas , Animais , Camundongos , Cálcio/metabolismo , Citosol/metabolismo , Citocinas/metabolismo , Células Dendríticas , Imunoterapia/métodos
5.
J Sci Food Agric ; 104(4): 2204-2214, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934077

RESUMO

BACKGROUND: With the requirements of environmental, cost and economic sustainability, new sources of alternative proteins in the livestock industry are receiving increasing attention. Mulberry (Morus alba L.) leaves are a unique feed resource because of their high protein content and large availability. Therefore, mining sustainable protein suitable for the animal husbandry industry in sericulture resources could achieve a win-win situation. RESULTS: The protein content in mulberry leaves is 232.10-386.16 g kg-1 , and the mean value of crude fat content is 43.76 ± 8.48 g kg-1 , which has the advantages of protein content and energy. In addition, the average content of phytic acid in mulberry leaves is only 1.88 ± 0.56 g kg-1 , which means that it is not inhibited in terms of nutrient absorption. Meanwhile, the digestibility of protein was Bean pulp > Sample 8 ≈ Alfalfa ≈ Sample 13 ≈ Cottonseed meal > Fish meal, and the ß-turn and particle size of mulberry leaf protein are more conducive to digestion in vitro. Furthermore, the protein of Sample 13 had the richest essential amino acids (252.00 g kg-1 ) and the highest essential amino acid index (EAAI), which was superior to conventional feed protein. In addition, the partial substitution of mulberry leaf protein (15%) significantly increased the EAAI value of conventional feed protein. However, to balance nutrition, it is necessary to combine mulberry leaf protein with other proteins to further broaden its application field. CONCLUSION: Mulberry leaves are a new source of feed protein, which helps to alleviate the two major problems of mulberry resource surplus and feed protein resource shortage. © 2023 Society of Chemical Industry.


Assuntos
Morus , Animais , Morus/química , Folhas de Planta/química
6.
Mar Pollut Bull ; 198: 115909, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096694

RESUMO

The pollution profiles of 25 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in the estuaries along the Laizhou Bay, northern China were investigated to better understand the new structure of PFASs under international regulations and to estimate the mass loadings of PFASs in coastal rivers. About 39.87 kg/d of PFASs were discharged into the Laizhou Bay by the Xiaoqing, Mi and Zhimai Rivers. Total PFAS concentrations in the Xiaoqing River decreased notably in recent years, but were still greater than the levels in 2011. Contribution of replacement substances exhibited an increasing trend in recent years. However, the long-chain chemicals were still the larger contributors of PFASs. Perfluoromethoxypropionic acid (PFMPA) was first detected with high concentrations ranging from 165.3 to 586.3 ng/L in the Xiaoqing River. The results of this study provided baseline data for ecological risk assessment, environmental management and corresponding development of pollution treatment technology.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Rios/química , Baías , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , China , Ácidos Alcanossulfônicos/análise
7.
Environ Sci Pollut Res Int ; 30(55): 117624-117636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872341

RESUMO

Lack of carbon source is the main limiting factor in the denitrification of low C/N ratio wastewater in the constructed wetlands (CWs). Agricultural waste has been considered as a supplementary carbon source but research is still limited. To solve this problem, ferric carbon (Fe-C) + zeolite, Fe-C + gravel, and gravel were used as substrates to build CWs in this experiment, aiming to investigate the effects of different carbon sources (rice straw, corncobs, alkali-heated corncobs) on nitrogen removal performance and microbial community structure in CWs for low C/N wastewater. The results demonstrated that the microbial community and effluent nitrogen concentration of CWs were mainly influenced by the carbon source rather than the substrate. Alkali-heated corncobs significantly enhanced the removal of NO2--N, NH4+-N, NO3-N, and TN. Carbon sources addition increased microbial diversity. Alkali-heated corncobs addition significantly increased the abundance of heterotrophic denitrifying bacteria (Proteobacteria and Bacteroidota). Furthermore, alkali-heated corncobs addition increased the copy number of nirS, nosZ, and nirK genes while greenhouse gas fluxes were lower than common corncobs. In summary, alkali-heated corncobs can be considered as an effective carbon source.


Assuntos
Águas Residuárias , Zea mays , Desnitrificação , Áreas Alagadas , Nitrogênio/análise , Carbono/química , Eliminação de Resíduos Líquidos/métodos
8.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761984

RESUMO

The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes , Proteínas da Membrana Bacteriana Externa/genética
9.
Genes Dis ; 10(3): 771-785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396555

RESUMO

Vascular remodeling and angiogenesis are two key processes in the maintenance of vascular homeostasis and involved in a wide array of vascular pathologies. Following these processes, extracellular matrix (ECM) provides the mechanical foundation for vascular walls. Lysyl oxidase (LOX), the key matrix-modifying enzyme, has been demonstrated to significantly affect structural abnormality and dysfunction in the blood vessels. The role of LOX in vascular remodeling and angiogenesis has always been the subject in the current medical research. Therefore, we presently make a summarization of the biosynthesis of LOX and the mechanisms involved in vascular remodeling and angiogenesis, as well as the role of LOX in diseases associated with vascular abnormalities and the therapeutic potential via targeting LOX. In particular, we give a proposal that LOX likely reshapes matrisome-associated genes expressions in the regulation of vascular remodeling and angiogenesis, which serves as a mechanistic insight into the critical role of LOX in these two aspects. Additionally, LOX has also dual effects on the vascular dysfunction, namely, inhibition of LOX for improving hypertension, restenosis and malignant tumor while activation of LOX for curing arterial aneurysm and dissection. LOX-targeted therapy may provide a promising therapeutic strategy for the treatment of various vascular pathologies associated with vascular remodeling and angiogenesis.

10.
J Transl Med ; 21(1): 406, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349774

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common complication in critically ill patients with sepsis and is often associated with a poor prognosis. We aimed to construct and validate an interpretable prognostic prediction model for patients with sepsis-associated AKI (S-AKI) using machine learning (ML) methods. METHODS: Data on the training cohort were collected from the Medical Information Mart for Intensive Care IV database version 2.2 to build the model, and data of patients were extracted from Hangzhou First People's Hospital Affiliated to Zhejiang University School of Medicine for external validation of model. Predictors of mortality were identified using Recursive Feature Elimination (RFE). Then, random forest, extreme gradient boosting (XGBoost), multilayer perceptron classifier, support vector classifier, and logistic regression were used to establish a prognosis prediction model for 7, 14, and 28 days after intensive care unit (ICU) admission, respectively. Prediction performance was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) were used to interpret the ML models. RESULTS: In total, 2599 patients with S-AKI were included in the analysis. Forty variables were selected for the model development. According to the areas under the ROC curve (AUC) and DCA results for the training cohort, XGBoost model exhibited excellent performance with F1 Score of 0.847, 0.715, 0.765 and AUC (95% CI) of 0.91 (0.90, 0.92), 0.78 (0.76, 0.80), and 0.83 (0.81, 0.85) in 7 days, 14 days and 28 days group, respectively. It also demonstrated excellent discrimination in the external validation cohort. Its AUC (95% CI) was 0.81 (0.79, 0.83), 0.75 (0.73, 0.77), 0.79 (0.77, 0.81) in 7 days, 14 days and 28 days group, respectively. SHAP-based summary plot and force plot were used to interpret the XGBoost model globally and locally. CONCLUSIONS: ML is a reliable tool for predicting the prognosis of patients with S-AKI. SHAP methods were used to explain intrinsic information of the XGBoost model, which may prove clinically useful and help clinicians tailor precise management.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Estado Terminal , Prognóstico , Injúria Renal Aguda/etiologia , Sepse/complicações , Aprendizado de Máquina
11.
J Exp Clin Cancer Res ; 42(1): 110, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131258

RESUMO

BACKGROUND: Ufm1-specific ligase 1 (Ufl1) and Ufm1-binding protein 1 (Ufbp1), as putative targets of ubiquitin-fold modifier 1 (Ufm1), have been implicated in several pathogenesis-related signaling pathways. However, little is known about their functional roles in liver disease. METHODS: Hepatocyte-specific Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were used to study their role in liver injury. Fatty liver disease and liver cancer were induced by high-fat diet (HFD) and diethylnitrosamine (DEN) administration, respectively. iTRAQ analysis was employed to screen for downstream targets affected by Ufbp1 deletion. Co-immunoprecipitation was used to determine the interactions between the Ufl1/Ufbp1 complex and the mTOR/GßL complex. RESULTS: Ufl1Δ/Δhep or Ufbp1Δ/Δhep mice exhibited hepatocyte apoptosis and mild steatosis at 2 months of age and hepatocellular ballooning, extensive fibrosis, and steatohepatitis at 6-8 months of age. More than 50% of Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice developed spontaneous hepatocellular carcinoma (HCC) by 14 months of age. Moreover, Ufl1Δ/Δhep and Ufbp1Δ/Δhep mice were more susceptible to HFD-induced fatty liver and DEN-induced HCC. Mechanistically, the Ufl1/Ufbp1 complex directly interacts with the mTOR/GßL complex and attenuates mTORC1 activity. Ablation of Ufl1 or Ufbp1 in hepatocytes dissociates them from the mTOR/GßL complex and activates oncogenic mTOR signaling to drive HCC development. CONCLUSIONS: These findings reveal the potential role of Ufl1 and Ufbp1 as gatekeepers to prevent liver fibrosis and subsequent steatohepatitis and HCC development by inhibiting the mTOR pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Neuropsychiatr Dis Treat ; 19: 1027-1042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153352

RESUMO

Background: NADPH oxidase 2 (NOX2) is highly expressed in injured brain tissues. We determined serum NOX2 levels of aneurysmal subarachnoid hemorrhage (aSAH) patients and further investigated correlation of serum NOX2 levels with disease severity, delayed cerebral ischemia (DCI) plus prognosis after aSAH. Methods: Serum NOX2 levels were measured in 123 aSAH patients and 123 healthy controls. World Federation of Neurological Surgeons scale (WFNS) score and modified Fisher (mFisher) score were utilized to assess disease severity. Modified Rankin scale (mRS) score was used to evaluate the clinical prognosis at 90 days after aSAH. Relations of serum NOX2 levels to DCI and 90-day poor prognosis (mRS score of 3-6) were analyzed using multivariate analysis. Receiver operating characteristic curve (ROC) was built to evaluate the prognostic predictive capability. Results: Serum NOX2 levels in aSAH patients, compared with healthy controls, were significantly increased, and were independently correlated with WFNS score, mFisher score and post-stroke 90-day mRS score. Patients with poor prognosis or DCI had significantly higher serum NOX2 levels than other remainders, and serum NOX2 levels independently predicted 90-day poor prognosis and DCI. Serum NOX2 had high prognosis and DCI predictive abilities, and their areas under ROC curve were similar to those of WFNS score and mFisher score. Conclusion: Serum NOX2 levels are significantly associated with hemorrhage severity, poor 90-day prognosis and DCI in aSAH patients. Hence, complement NOX2 may serve as a potential prognostic biomarker after aSAH.

13.
Cancer Res Commun ; 3(4): 659-671, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37089864

RESUMO

Radiotherapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet radioresistance remains a major barrier to therapeutic efficacy. A better understanding of the predominant pathways determining radiotherapy response could help develop mechanism-informed therapies to improve cancer management. Here we report that radioresistant HNSCC cells exhibit increased tumor aggressiveness. Using unbiased proteome profiler antibody arrays, we identify that upregulation of c-Met phosphorylation is one of the critical mechanisms for radioresistance in HNSCC cells. We further uncover that radioresistance-associated HNSCC aggressiveness is effectively exacerbated by c-Met but is suppressed by its genetic knockdown and pharmacologic inactivation. Mechanistically, the resulting upregulation of c-Met promotes elevated expression of plexin domain containing 2 (PLXDC2) through activating ERK1/2-ELK1 signaling, which in turn modulates cancer cell plasticity by epithelial-mesenchymal transition (EMT) induction and enrichment of the cancer stem cell (CSC) subpopulation, leading to resistance of HNSCC cells to radiotherapy. Depletion of PLXDC2 overcomes c-Met-mediated radioresistance through reversing the EMT progress and blunting the self-renewal capacity of CSCs. Therapeutically, the addition of SU11274, a selective and potent c-Met inhibitor, to radiation induces tumor shrinkage and limits tumor metastasis to lymph nodes in an orthotopic mouse model. Collectively, these significant findings not only demonstrate a novel mechanism underpinning radioresistance-associated aggressiveness but also provide a possible therapeutic strategy to target radioresistance in patients with HNSCC. Significance: This work provides novel insights into c-Met-PLXDC2 signaling in radioresistance-associated aggressiveness and suggests a new mechanism-informed therapeutic strategy to overcome failure of radiotherapy in patients with HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Células-Tronco Neoplásicas , Transdução de Sinais
14.
Front Endocrinol (Lausanne) ; 14: 1123124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843575

RESUMO

The UFM1 conjugation system(UFMylation)is a novel type of ubiquitin-like system that plays an indispensable role in maintaining cell homeostasis under various cellular stress. Similar to ubiquitination, UFMylation consists of a three-step enzymatic reaction with E1-like enzymes ubiquitin-like modifier activating enzyme5 (UBA5), E2-like enzymes ubiquitin-fold modifier-conjugating enzyme 1(UFC1), and E3-like ligase UFM1-specific ligase 1 (UFL1). As the only identified E3 ligase, UFL1 is responsible for specific binding and modification of the substrates to mediate numerous hormone signaling pathways and endocrine regulation under different physiological or pathological stress, such as ER stress, genotoxic stress, oncogenic stress, and inflammation. Further elucidation of the UFL1 working mechanism in multiple cellular stress responses is essential for revealing the disease pathogenesis and providing novel potential therapeutic targets. In this short review, we summarize the recent advances in novel UFL1 functions and shed light on the potential challenges ahead, thus hopefully providing a better understanding of UFMylation-mediated cellular stress.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Proteínas/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
15.
Biomater Sci ; 10(20): 5912-5924, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040793

RESUMO

The efficacy of free radical-based therapeutic strategies is severely hindered by nonspecific accumulation, premature release and glutathione (GSH) scavenging effects. Herein, a tumor microenvironment-responsive MPDA/AIPH@Cu-TA@HA (abbreviated as MACTH) nanoplatform was constructed by coating Cu2+ and tannic acid (TA) on the surface of azo initiator (AIPH)-loaded mesoporous polydopamine (MPDA) nanoparticles and further modifying them with hyaluronic acid (HA) to achieve tumor-specific photothermal/thermodynamic/chemodynamic synergistic therapy (PTT/TDT/CDT). Once accumulated and internalized into cancer cells through CD44 receptor-mediated active targeting and endocytosis, the HA shell of MACTH would be preliminarily degraded by hyaluronidase (HAase) to expose the Cu-TA metal-phenolic networks, which would further dissociate in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Cu2+ and AIPH. On the one hand, the released Cu2+ could deplete the overexpressed GSH via redox reactions and produce Cu+, which in turn catalyzes endogenous H2O2 into highly cytotoxic hydroxyl radicals (˙OH) for CDT. On the other hand, the local hyperthermia generated by MACTH under 808 nm laser irradiation could not only augment CDT efficacy through accelerating the Cu+-mediated Fenton-like reaction, but also trigger the decomposition of AIPH to produce biotoxic alkyl radicals (˙R) for TDT. The consumption of GSH and accumulation of oxygen-independent free radicals (˙OH/˙R) synergistically amplified intracellular oxidative stress, resulting in substantial apoptotic cell death and significant tumor growth inhibition. Collectively, this study provides a promising paradigm for customizing stimuli-responsive free radical-based nanoplatforms to achieve accurate and efficacious cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Compostos de Diazônio , Glutationa/metabolismo , Humanos , Ácido Hialurônico/química , Hialuronoglucosaminidase , Peróxido de Hidrogênio/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oxigênio , Piridinas , Taninos , Termodinâmica , Microambiente Tumoral
16.
BMJ Open ; 12(3): e053741, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277404

RESUMO

INTRODUCTION: Pharmacist-participated medication reconciliation proved an effective strategy to decrease the risk of medication discrepancy-related errors. However, it is still under pilot in China and its effectiveness in the Chinese healthcare system remains unclear. This study aims to conduct a pharmacist-participated medication reconciliation intervention for elderly patients in county hospitals in China and to evaluate its effect. METHODS AND ANALYSIS: This is a multicentre, prospective, open-label, assessor-blinded, cluster, non-randomised, controlled study for elderly patients. The study will be conducted in seven county hospitals, and the clusters will be hospital wards. In each hospital, two internal medicine wards will be randomly allocated into either intervention group or control group. Patients in the intervention group will receive pharmacist-participated medication reconciliation, and those in the control group will receive standard care. The primary outcome is the incidence of medication discrepancy, and the secondary outcomes are patients' medication adherence, healthcare utilisation and medical costs within 30 days after discharge. ETHICS AND DISSEMINATION: Ethics committee approval of this study was obtained from Peking University Institution Review Board (IRB00001052-21016). We have also obtained ethical approvals from all the participating centres. The findings will be published in scientific and conference presentations. TRAIL REGISTRATION NUMBER: ChiCTR2100045668.


Assuntos
Reconciliação de Medicamentos , Farmacêuticos , Idoso , Hospitais de Condado , Humanos , Adesão à Medicação , Reconciliação de Medicamentos/métodos , Estudos Multicêntricos como Assunto , Estudos Prospectivos
17.
Sleep Breath ; 26(4): 1857-1868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35122603

RESUMO

OBJECTIVE: Research has shown a positive relationship between pulmonary and periodontal disease. However, the relationship remains unclear. The aim of this meta-analysis was to evaluate the associations between pulmonary disease and periodontal health. MATERIALS AND METHODS: MEDLINE, PubMed, EMBASE, Web of Science, Science Citation Index, Wanfang, and CNKI were searched for all the relevant studies of relationship between pulmonary disease and periodontal health. Weighted mean difference (WMD)/odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the association. RESULTS: Thirty-seven studies were included in this meta-analysis. Pooled analysis showed a significant association between pulmonary and periodontal disease (adjusted OR, 1.93; 95%CI: 1.60-2.33; P < 0.05), and pooled adjusted OR was 1.64, 3.03, and 2.21 in COPD, asthma, and pneumonia, respectively. The pooled analysis also showed that patients with pulmonary disease suffered from worse periodontal health as most periodontal indexes in those patients were poorer. CONCLUSIONS: There is a strong association between pulmonary disease and periodontal health. Clinical trials analyzing the causality and pathological basis of the association of these two diseases are needed.


Assuntos
Asma , Doenças Periodontais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doenças Periodontais/epidemiologia , Doenças Periodontais/complicações , Razão de Chances , Asma/complicações , Causalidade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/complicações
18.
Biomedicines ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36672605

RESUMO

Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands' innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1ß, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1ß, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.

19.
Nanoscale ; 13(37): 15677-15688, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523626

RESUMO

Despite the great potential of cascade catalytic reactions in tumor treatment, uncontrolled catalytic activities in vivo lead to inevitable off-target toxicity to normal tissues, which greatly hampers their clinical conversion. Herein, an intelligent cascade nanoreactor (hMnO2-Au@PDA, hMAP) was constructed by depositing glucose oxidase (GOx)-mimicking ultrasmall gold nanoparticles (Au NPs) into honeycomb-shaped manganese oxide (hMnO2) nanostructures and then coating them with polydopamine (PDA) to achieve pH-responsive and photothermal-enhanced nanocatalytic therapy. Upon exposure to the mild acidic tumor microenvironment (TME), the PDA gatekeeper would collapse, and the inner hMnO2 could simultaneously deplete glutathione (GSH) and generate Mn2+, while a considerable amount of H2O2 produced from the oxidation of glucose by GOx-mimicking Au NPs could accelerate the Mn2+-mediated Fenton-like reaction, yielding sufficient highly toxic ˙OH. More importantly, the pH-responsive cascade reaction between Au NPs and hMnO2 could be further enhanced by localized hyperthermia induced from PDA under near-infrared (NIR) laser irradiation, thereby inducing significant cell apoptosis in vitro and tumor inhibition in vivo. This work provided a promising paradigm by innovatively designing a TME-responsive and photothermal-enhanced cascade catalytic nanoreactor for safe and efficient cancer therapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Linhagem Celular Tumoral , Ouro , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Indóis , Nanotecnologia , Polímeros
20.
Front Cell Dev Biol ; 9: 676789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307359

RESUMO

The dairy cattle suffer from severe liver dysfunction during the pathogenesis of ketosis. The Ufm1 conjugation system is crucial for liver development and homeostasis. Ufm1 binding protein (Ufbp1) is a putative Ufm1 target and an integral component, but its role in ketosis-induced liver injury is unclear so far. The purpose of this study is to explore the key role of Ufbp1 in liver fibrosis caused by ketosis in vivo and in vitro. Liver tissues were collected from ketotic cows and Ufbp1 conditional knockout (CKO) mice in vivo. However, Ufbp1 -/- mouse embryonic fibroblast cells and Hela cells were used for in vitro validation. Subsequently, various assays were performed to reveal the underlying molecular mechanisms of the Ufbp1 protective effect. In this study, hepatic fibrosis, endoplasmic reticulum (ER) stress, and apoptosis were reported in the liver of ketotic cows, fibrotic markers (alpha-smooth muscle actin, Collagen1) and ER stress markers (glucose-regulated protein 78, CEBP homologous protein) were upregulated remarkably, and the apoptosis-related genes (Bcl2, Bax) were in line with expectations. Interestingly, Ufbp1 expression was almost disappeared, and Smad2/Smad3 protein was largely phosphorylated in the liver of ketotic cows, but Ufbp1 deletion caused Smad3 phosphorylation apparently, rather than Smad2, and elevated ER stress was observed in the CKO mice model. At the cellular level, Ufbp1 deficiency led to serious fibrotic and ER stress response, Smad3 was activated by phosphorylation significantly and then was translocated into the nucleus, whereas p-Smad2 was largely unaffected in embryonic fibroblast cells. Ufbp1 overexpression obviously suppressed Smad3 phosphorylation in Hela cells. Ufbp1 was found to be in full combination with Smad3 using endogenous immunoprecipitation. Taken together, our findings suggest that downregulation or ablation of Ufbp1 leads to Smad3 activation, elevated ER stress, and hepatocyte apoptosis, which in turn causes liver fibrosis. Ufbp1 plays a protective role in ketosis-induced liver injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...